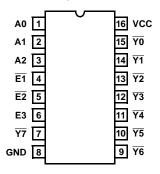
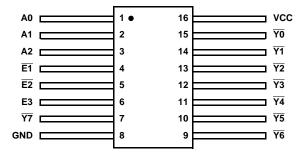


Data Sheet September 12, 2005 FN2462.3

Radiation Hardened Inverting 3-to-8 Line Decoder/Demultiplexer


The Intersil HCTS138MS is a Radiation Hardened 3-to-8 line Decoder/Demultiplexer. The outputs are active in the low state. Two active low and one active high enables ($\overline{E1}$, $\overline{E2}$, E3) are provided. If the device is enabled, the binary inputs (A0, A1, A2) determine which one of the eight normally high outputs will go to a low logic level.

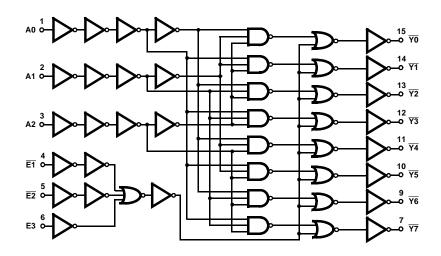
The HCTS138MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS138MS is supplied in a 16 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Pinouts

16 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T16 TOP VIEW

16 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F16 TOP VIEW


Features

- · 3 Micron Radiation Hardened SOS CMOS
- · Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day (Typ)
- · Latch-Up Free Under Any Conditions
- Fanout (Over Temperature Range)
 - Bus Driver Outputs 15 LSTTL Loads
- Military Temperature Range: -55°C to +125°C
- · Significant Power Reduction Compared to LSTTL ICs
- · DC Operating Voltage Range: 4.5V to 5.5V
- · LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels Ii ≤ 5μA at VOL, VOH

Ordering Information

PART NUMBER	TEMP RANGE	SCREENING LEVEL	PACKAGE
HCTS138DMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead SBDIP
HCTS138KMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead Ceramic Flatpack
HCTS138HMSR	+25°C	Die	Die

Functional Diagram

TRUTH TABLE

		INP	UTS										
ENABLE			OUTPUTS										
E3	E2	E1	A2	A 1	A0	Y0	Y1	Y2	<u>Y3</u>	Y 4	<u>Y5</u>	Y6	Y 7
Х	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings

Supply Voltage (VCC)0.5V to +7.0V Input Voltage Range, All Inputs0.5V to VCC +0.5V
DC Input Current, Any One Input±10mA
DC Drain Current, Any One Output±25mA
(All Voltage Reference to the VSS Terminal)
Storage Temperature Range (TSTG)65°C to +150°C
Lead Temperature (Soldering 10sec)+265°C
Junction Temperature (TJ)+175°C
ESD Classification

Reliability Information

Thermal Resistance	$\theta_{\sf JA}$	θ_{JC}
SBDIP Package	73°C/W	24°C/W
Ceramic Flatpack Package	114°C/W	29°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.44W
If device power exceeds package dissipate	ion capabili	ty, provide
heat sinking or derate linearly at the following	rate:	
SBDIP Package	1	3.7mW/°C
Ceramic Flatpack Package		.8.8mW/°C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage+4.5	5V to +5.5V
Input Rise and Fall Times at VCC = 4.5V (TR, TF)	500ns Max
Operating Temperature Range (T _A)55°C	to +125°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTE 1)	GROUP A SUBGRO		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	UPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	40	μА
		VIIV - VCC OF GND	2, 3	+125°C, -55°C	-	750	μΑ
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	7.2	-	mA
		VOO1 - 0.4V, VIL - 0V	2, 3	+125°C, -55°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIH = 4.5V, VOUT = VCC -0.4V.	1	+25°C	-7.2	-	mA
(Source)		VIL = 0V	2, 3	+125°C, -55°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μА
Current		GNU	2, 3	+125°C, -55°C	-	±5.0	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

NOTES:

- 1. All voltages reference to device GND.
- 2. For functional tests $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0".

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)	GROUP A SUBGRO		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	UPS	TEMPERATURE	MIN	MAX	UNITS
Address to Output	TPLH	VCC = 4.5V	9	+25°C	2	25	ns
			10, 11	+125°C, -55°C	2	30	ns
	TPHL	VCC = 4.5V	9	+25°C	2	28	ns
			10, 11	+125°C, -55°C	2	39	ns
Enable to Output	TPLH	VCC = 4.5V	9	+25°C	2	26	ns
			10, 11	+125°C, -55°C	2	31	ns
	TPHL	VCC = 4.5V	9	+25°C	2	26	ns
			10, 11	+125°C, -55°C	2	34	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power Dissipation	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	89	pF
Dissipation			1	+125°C, -55°C	-	102	pF
Input Capacitance	CIN	VCC = 5.0V, f = 1MHz	1	+25°C	-	10	pF
			1	+125°C, -55°C	-	10	pF
Output Transition Time	TTHL TTLH	VCC = 4.5V	1	+25°C	-	15	ns
Tille	III		1	+125°C, -55°C	-	22	ns

NOTE:

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)		200K LIM	RAD	
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.75	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-6.0	-	mA

^{1.} The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V at 200K RAD, IOL = 50μA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V at 200K RAD, IOH = -50μA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μА
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25°C	-	-	-
Address to Output	TPLH	VCC = 4.5V	+25°C	2	30	ns
	TPHL	VCC = 4.5V	+25°C	2	39	ns
Enable to Output	TPLH	VCC = 4.5V	+25°C	2	31	ns
	TPHL	VCC = 4.5V	+25°C	2	34	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.
- 3. For functional tests $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0".

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT	
ICC	5	12μΑ	
IOL/IOH	5	-15% of 0 Hour	

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Prebu	rn-ln)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test I (Po	stburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test II (Po	ostburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (P	ostburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE:

1. Alternate group A inspection in accordance with method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

		TEST		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

			OSCILLATOR		LATOR	
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	$\text{VCC} = \text{6V} \pm \text{0.5V}$	50kHz	25kHz	
STATIC BURN-IN I TEST CONNECTIONS (Note 1)						
7, 9 - 15	1 - 6, 8		16			
STATIC BURN-IN II TEST CONNECTIONS (Note 1)						
7, 9 - 15	8	-	1 - 6, 16	-	-	
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)						
-	4, 5, 8	7, 9 - 15	3, 6, 16	2	1	

NOTES:

- 1. Each pin except VCC and GND will have a resistor of 10K $\!\Omega\pm5\%$ for static burn-in
- 2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	$\text{VCC} = 5\text{V} \pm 0.5\text{V}$
7, 9 - 15	8	1 - 6, 16

NOTE: Each pin except VCC and GND will have a resistor of 47K Ω ± 5% for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

^{1.} Except FN test which will be performed 100% Go/No-Go.

Intersil Space Level Product Flow - 'MS'

Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)

GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects

100% Nondestructive Bond Pull, Method 2023

Sample - Wire Bond Pull Monitor, Method 2011

Sample - Die Shear Monitor, Method 2019 or 2027

100% Internal Visual Inspection, Method 2010, Condition A

100% Temperature Cycle, Method 1010, Condition C, 10 Cycles

100% Constant Acceleration, Method 2001, Condition per Method 5004

100% PIND, Method 2020, Condition A

100% External Visual

100% Serialization

100% Initial Electrical Test (T0)

100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 1 (T1)

100% Delta Calculation (T0-T1)

100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015

100% Interim Electrical Test 2 (T2)

100% Delta Calculation (T0-T2)

100% PDA 1, Method 5004 (Notes 1and 2)

100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015

100% Interim Electrical Test 3 (T3)

100% Delta Calculation (T0-T3)

100% PDA 2, Method 5004 (Note 2)

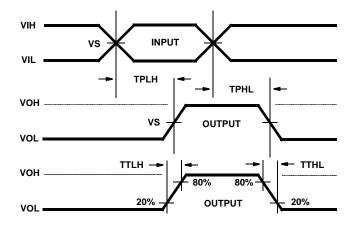
100% Final Electrical Test

100% Fine/Gross Leak, Method 1014

100% Radiographic, Method 2012 (Note 3)

100% External Visual, Method 2009

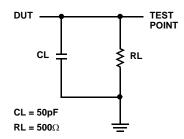
Sample - Group A, Method 5005 (Note 4)


100% Data Package Generation (Note 5)

NOTES:

- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - · Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test
 equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - · Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed
 by an authorized Quality Representative.

FN2462.3 September 12, 2005


AC Timing Diagrams

AC VOLTAGE LEVELS

PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

AC Load Circuit

FN2462.3

Die Characteristics

DIE DIMENSIONS:

85 x 101 mils

METALLIZATION:

Type: SiAl

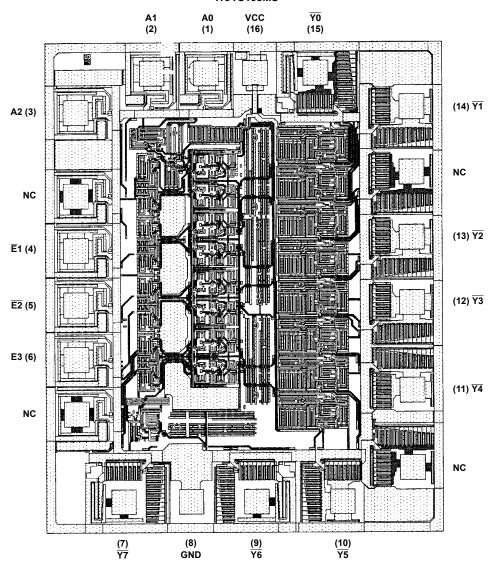
Metal Thickness: $11k\text{\AA} \pm 1k\text{\AA}$

GLASSIVATION:

Type: SiO₂

Thickness: 13kÅ ± 2.6kÅ

WORST CASE CURRENT DENSITY:


<2.0 x 10⁵A/cm²

BOND PAD SIZE:

100μm x 100μm 4 x 4 mils

Metallization Mask Layout

HCTS138MS

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS138 is TA14461A.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

intersil